If it's not what You are looking for type in the equation solver your own equation and let us solve it.
610(t)=16t^2
We move all terms to the left:
610(t)-(16t^2)=0
determiningTheFunctionDomain -16t^2+610t=0
a = -16; b = 610; c = 0;
Δ = b2-4ac
Δ = 6102-4·(-16)·0
Δ = 372100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{372100}=610$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(610)-610}{2*-16}=\frac{-1220}{-32} =38+1/8 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(610)+610}{2*-16}=\frac{0}{-32} =0 $
| 5x(x+5)=40x+5(x^2+11) | | 489=118+7n | | 2u-46=u+45 | | 1=f/29-3 | | 16d-46=226 | | 2z-50=z+50 | | 57+x+x=907 | | z-535=288 | | 5(-3x+2)+(x-3)=-4(4x+5)+13 | | k/6=10 | | 0.25=0.75+r | | 2v-50=v+49 | | 37=6y+1 | | 7^x+5=4 | | 5(-3x+2)+(x-3)=-4(4x+5) | | 50/p=5 | | 8(x+1)+4x-12=16-4x | | 12+3y=180 | | 16s+36=180 | | 6=21-3s | | (6t+3)=-8 | | 52+4z=180 | | -30=6f-2f | | 41=61-w | | 0.8x+0.28=0.42x-0.8 | | 50-2x2=0 | | m/6-3=4 | | 7(p-98)=14 | | -2(x+2)+40=2x-4(x-7) | | 5=q/5 | | 1/2(6-2)=z | | 32x=96x= |